Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 1, 2026
-
Abstract The utility of visible light for 3D printing has increased in recent years owing to its accessibility and reduced materials interactions, such as scattering and absorption/degradation, relative to traditional UV light‐based processes. However, photosystems that react efficiently with visible light often require multiple molecular components and have strong and diverse absorption profiles, increasing the complexity of formulation and printing optimization. Herein, a streamlined method to select and optimize visible light 3D printing conditions is described. First, green light liquid crystal display (LCD) 3D printing using a novel resin is optimized through traditional empirical methods, which involves resin component selection, spectroscopic characterization, time‐intensive 3D printing under several different conditions, and measurements of dimensional accuracy for each printed object. Subsequent analytical quantification of dynamic photon absorption during green light polymerizations unveils relationships to cure depth that enables facile resin and 3D printing optimization using a model that is a modification to the Jacob's equation traditionally used for stereolithographic 3D printing. The approach and model are then validated using a distinct green light‐activated resin for two types of projection‐based 3D printing.more » « less
-
Abstract With 3D printing, the desire is to be “limited only by imagination,” and although remarkable advancements have been made in recent years, the scope of printable materials remains narrow compared to other forms of manufacturing. Light‐driven polymerization methods for 3D printing are particularly attractive due to unparalleled speed and resolution, yet the reliance on high‐energy UV/violet light in contemporary processes limits the number of compatible materials due to pervasive absorption, scattering, and degradation at these short wavelengths. Such issues can be addressed with visible‐light photopolymerizations. However, these lower‐energy methods often suffer from slow reaction times and sensitivity to oxygen, precluding their utility in 3D printing processes that require rapid hardening (curing) to maximize build speed and resolution. Herein, multifunctional thiols are identified as simple additives to enable rapid high‐resolution visible‐light 3D printing under ambient (atmospheric O2) conditions that rival modern UV/violet‐based technology. The present process is universal, providing access to commercially relevant acrylic resins with a range of disparate mechanical responses from strong and stiff to soft and extensible. Pushing forward, the insight presented within this study will inform the development of next‐generation 3D‐printing materials, such as multicomponent hydrogels and composites.more » « less
An official website of the United States government
